24,762 research outputs found

    Fast-to-Alfv\'en mode conversion mediated by Hall current. II Application to the solar atmosphere

    Full text link
    Coupling between fast magneto-acoustic and Alfv\'en waves can be observe in fully ionized plasmas mediated by stratification and 3D geometrical effects. In Paper I, Cally & Khomenko (2015) have shown that in a weakly ionized plasma, such as the solar photosphere and chromosphere, the Hall current introduces a new coupling mechanism. The present study extends the results from Paper I to the case of warm plasma. We report on numerical experiments where mode transformation is studied using quasi-realistic stratification in thermodynamic parameters resembling the solar atmosphere. This redresses the limitation of the cold plasma approximation assumed in Paper I, in particular allowing the complete process of coupling between fast and slow magneto-acoustic modes and subsequent coupling of the fast mode to the Alfv\'en mode through the Hall current. Our results confirm the efficacy of the mechanism proposed in Paper I for the solar case. We observe that the efficiency of the transformation is a sensitive function of the angle between the wave propagation direction and the magnetic field, and of the wave frequency. The efficiency increases when the field direction and the wave direction are aligned for increasing wave frequencies. After scaling our results to typical solar values, the maximum amplitude of the transformed Alfv\'en waves, for a frequency of 1 Hz, corresponds to an energy flux (measured above the height of peak Hall coupling) of ∼103\sim10^3 W m−2\rm W\,m^{-2}, based on an amplitude of 500 m s−1\rm m\,s^{-1} at β=1\beta=1, which is sufficient to play a major role in both quiet and active region coronal heating

    Coercivity reduction in a two-dimensional array of nanoparticles

    Full text link
    We report on theoretical investigation of the magnetization reversal in two-dimensional arrays of ferromagnetic nano-particles with parameters of cobalt. The system was optimized for achieving the lowest coercivity in an array of particles located in the nodes of triangular, hexagonal and square grids. Based on the numerical solution of the non-stochastic Landau-Lifshitz-Gilbert equation we show that each particle distribution type is characterized with a proper optimal distance, allowing to lower the coercivity values for approximately 30% compared with the reference value obtained for a single nano-particle. It was shown that the reduction of coercivity occurs even if the particle position in the array is not very precise. In particular, the triangular particle arrangement maintained the same optimal distance between the particles under up to 20% random displacements of their position within the array.Comment: 7 pages, 5 figure

    Partition Functions of Pure Spinors

    Full text link
    We compute partition functions describing multiplicities and charges of massless and first massive string states of pure-spinor superstrings in 3,4,6,10 dimensions. At the massless level we find a spin-one gauge multiplet of minimal supersymmetry in d dimensions. At the first massive string level we find a massive spin-two multiplet. The result is confirmed by a direct analysis of the BRST cohomology at ghost number one. The central charges of the pure spinor systems are derived in a manifestly SO(d) covariant way confirming that the resulting string theories are critical. A critical string model with N=(2,0) supersymmetry in d=2 is also described.Comment: LaTex, 30 p

    Solving the kilo-second QPO problem of the intermediate polar GK Persei

    Get PDF
    We detect the likely optical counterpart to previously reported X-ray QPOs in spectrophotometry of the intermediate polar GK Persei during the 1996 dwarf nova outburst. The characteristic timescales range between 4000--6000 s. Although the QPOs are an order of magnitude longer than those detected in the other dwarf novae we show that a new QPO model is not required to explain the long timescale observed. We demonstrate that the observations are consistent with oscillations being the result of normal-timescale QPOs beating with the spin period of the white dwarf. We determine the spectral class of the companion to be consistent with its quiescent classification and find no significant evidence for irradiation over its inner face. We detect the white dwarf spin period in line fluxes, V/R ratios and Doppler-broadened emission profiles.Comment: 14 pages, 11 figures. Accepted for publication in MNRA
    • …
    corecore